Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pac Symp Biocomput ; 29: 134-147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38160275

RESUMO

Recent research has effectively used quantitative traits from imaging to boost the capabilities of genome-wide association studies (GWAS), providing further understanding of disease biology and various traits. However, it's important to note that phenotyping inherently carries measurement error and noise that could influence subsequent genetic analyses. The study focused on left ventricular ejection fraction (LVEF), a vital yet potentially inaccurate quantitative measurement, to investigate how imprecision in phenotype measurement affects genetic studies. Several methods of acquiring LVEF, along with simulating measurement noise, were assessed for their effects on ensuing genetic analyses. The results showed that by introducing just 7.9% of measurement noise, all genetic associations in an LVEF GWAS with almost forty thousand individuals could be eliminated. Moreover, a 1% increase in mean absolute error (MAE) in LVEF had an effect equivalent to a 10% reduction in the sample size of the cohort on the power of GWAS. Therefore, enhancing the accuracy of phenotyping is crucial to maximize the effectiveness of genome-wide association studies.


Assuntos
Estudo de Associação Genômica Ampla , Função Ventricular Esquerda , Humanos , Volume Sistólico/genética , Biologia Computacional , Fenótipo
2.
medRxiv ; 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36824841

RESUMO

Background: Recent studies have leveraged quantitative traits from imaging to amplify the power of genome-wide association studies (GWAS) to gain further insights into the biology of diseases and traits. However, measurement imprecision is intrinsic to phenotyping and can impact downstream genetic analyses. Methods: Left ventricular ejection fraction (LVEF), an important but imprecise quantitative imaging measurement, was examined to assess the impact of precision of phenotype measurement on genetic studies. Multiple approaches to obtain LVEF, as well as simulated measurement noise, were evaluated with their impact on downstream genetic analyses. Results: Even within the same population, small changes in the measurement of LVEF drastically impacted downstream genetic analyses. Introducing measurement noise as little as 7.9% can eliminate all significant genetic associations in an GWAS with almost forty thousand individuals. An increase of 1% in mean absolute error (MAE) in LVEF had an equivalent impact on GWAS power as a decrease of 10% in the cohort sample size, suggesting optimizing phenotyping precision is a cost-effective way to improve power of genetic studies. Conclusions: Improving the precision of phenotyping is important for maximizing the yield of genome-wide association studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...